
Website

How EmissionsWill ImpactWildfire Risk
Nathan Brodie

njbrodie@ucsd.edu
Benjamin Xue
bxue@ucsd.edu

Kai Morita
kmorita@ucsd.edu

DuncanWatson-Parris
dwatsonparris@ucsd.edu

DSC 180B B03-2, The University of California, San Diego

WhyWildfires Are Important

Wildfires are occurrences of uncontrolled fires that spread rapidly across vegeta-

tion. These fires have many effects on the ecosystem, including:

Climate ChangeWildfires emit carbon dioxide into the atmosphere, which

leads to an increase in temperatures globally.

Destruction of Vegetation Many plants and soil are destroyed in the process.

Health effects Smoke from wildfires can cause respiratory issues in humans

and animals.

Vapor Pressure Deficit (VPD) represents the difference between the water vapor

present in the atmosphere and the maximum amount of water vapor the atmo-

sphere can hold. This can be used to represent how dry plants are within a surface

area, which is an indicator of high wildfire chance. We plan to use 3 different ma-

chine learning models to analyze how emissions can affect VPD.

Data Background

Coupled Model Intercomparison Project Phase 6 (CMIP6): A collection of

many of the most advanced climate models.

Community Earth System Model 2 (CESM2): A part of CMIP6 and the specific

climate simulation model used in this project.

To calculate VPD, we utilized CESM2’s data regarding near-surface relative humid-

ity and near-surface average temperature. To confirm that the data was sufficiently

complete, we compared the two variables between two time periods.

Figure 1. Humidity and Temperature Differences

There are two steps to calculate the VPD using relative humidity and average tem-

perature:

1. Calculate the saturation vapor pressure (SVP) using the Clausius-Clapeyron

Equation.

SV P = 0.6112 exp
(

17.76 × T

T + 243.5

)
2. Calculate the VPD as the difference between relative humidity (RH) and SVP.

V PD =
(

1 − RH

100

)
× SV P

The ModelsWe Used

Our models used the emissions of CO2, CH4, SO2 and BC (black carbon) from

several different climate scenarios to make predictions of global VPD up to the

year 2100. We followed the approach of the ClimateBench paper [4] to test our

predictions on the climate change scenario ssp245 (moderate climate change). Like

[4], we used the following models:

Linear Model: We fit a linear model to predict VPD from the global mean

temperature. This is our baseline model to compare the performance of our

machine learning models.

Gaussian Process: We performed dimensionality reduction on the aerosol

emissions, then fit a GP model with a Matern-1.5 kernel onto the data.

Random Forest: We used the same dimensionality reduced data as the

Gaussian Process to fit a random forest.

Convolutional Neural Network: We fit a CNN-LSTM trained in 10 year chunks

using ReLU activation functions.

Our Models’ Predictions
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Figure 2. Model Error Comparisons

Results and Discussion

To compare our emulator predictions, we calculate the root-mean square error

(RMSE), normalize it spatially (NRMSEs) and globally (NRMSEg), then compare

using a weighted sum (NRMSE). These are defined in [4] as follows:

NRMSEs =
√

〈(|xi,j,t|t − |yi,j,t,n|n,t)2〉/|〈yi,j〉|t,n

NRMSEg =
√

|(〈xi,j,t〉 − 〈|yi,j,t,n|n〉)2|t/|〈yi,j〉|t,n

NRMSE = NRMSEs + α · NRMSEg,

where 〈xi,j〉 = 1
NlatNlon

∑Nlat

i

∑Nlon

j cos(lat(i))xi,j is the global mean, and α = 5.
In the following table, we compare the NRMSE results of each of our models.

Global NRMSE represents the global averages across the Earth, while spatial is

concerned with differences in individual regions.

Model Spatial Global Total

Linear 0.036 0.012 0.096

CNN 0.074 0.075 0.456

GP 0.079 0.027 0.212

RF 0.051 0.019 0.144

Table 1. NRMSE results of different climate models used.

The linear model performed best when calculating the spatial, global, and total

NRMSEs. This indicates a very linear relationship between global emissions and

vapor pressure deficit.

Future Direction

Additional data to analyze

To further improve our results we can utilize other variables within the dataset to

increase accuracy. For example, we could look at evapotranspiration, wind direc-

tion, and other variables that might not have as large an impact as VPD but could

still contribute to greater accuracy.

Another approach we can take to improve the real-world implication of our model

could be to find where trees and other possible flammable plants are prevalent

on Earth. Combining our VPD data with this data will allow us to predict where

wildfires will occur with greater accuracy.

Improvements to Model

To increase the accuracy of our models in how they apply to predicting wildfires,

we can focus on predicting VPD only over land. This would make our models’

predictions more focused on the locations where wildfires can actually occur.
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